Distributed Sequential Computing
Using Mobile Code: Moving Computation to Data

Lei Pan, Lubomir F. Bic, and Michael B. Dillencourt
Information and Computer Science
University of California, Irvine, CA 92697-3425, USA
{pan,bic,dillenco} @ics.uci.edu

Abstract

Sequential computations can benefit from a distributed
environment consisting of a network of workstations
through the use of a mobile agent system. We found signifi-
cant performance improvement when sequential algorithms
for solving large industrial problems are implemented us-
ing mobile agents. This is because raw data is distributed
so that the cost of disk paging is completely eliminated, and
a principle of “code moving to data” is followed to achieve
efficient communication through the network. We argue that
mobile agent systems provide a new level of abstraction in
which application programming is made easier because the
sequential algorithms remain essentially unchanged in mo-
bile agent code.

Keywords: autonomous mobile agents, MESSENGERS,
Network of Workstations, distributed computing, distributed
sequential computing, matrix operations, numerical solu-
tion of linear system of equations, Gauss-Seidel iteration,
Crout factorization

1. Introduction

One of the major foci of distributed computing is using
networks of workstations to solve numerical problems effi-
ciently. The most obvious way of achieving this is through
parallel computation, when the problem lends itself to par-
allelization. This can make the computation efficient in
several ways. Speedup is achieved by distributing the to-
tal computational work over multiple workstations; this is
the fundamental advantage of parallelism. But in addition,
the computation on each workstation may use a smaller
working set, leading to fewer page faults. Since process-
ing page faults is part of the work that must be performed,
distributing a numerical computation over multiple work-
stations thus decreases the total amount of work required by
the computation. In some cases, the efficiency advantages

0190-3918/01 $10.00 © 2001 IEEE

717

due to the second effect—reducing total work—may dwarf
the efficiency advantages due to distributing the workload.
This suggests that even for algorithms that are not eas-
ily parallelized, distributing the data over multiple work-
stations and running the sequential algorithm can poten-
tially result in significant increases in efficiency. Of course,
it is often possible to obtain further improvement with a
parallel re-implementation. The advantage of distributing
the sequential algorithm is that it can lead to a significant
improvement in situations where paging is occurring with
only a very minor re-programming effort; the question of
whether the additional improvement to be gained from a
parallel re-implementation justifies what might be a major
re-programming effort would then need to be evaluated on
a case-by-case basis.

In this paper, we exploit this observation to provide ef-
ficient implementations for solving some numerical prob-
lems. Our algorithms run on a network of workstations. We
call our approach distributed sequential computing. The
algorithms are sequential in the sense that there is always
a single locus of computation. The data is distributed; in
essence, we use the network as a data farm. Rather than
having the data migrate to the code (the classical message-
passing approach), the code follows the data (an agent-
based approach).

Our approach has two major advantages:

Improved Performance: If the size of the state of the
program is small relative to the amount of data, it is cheaper
to move the code to the data (i.e., to send the program and
the associated state information) than to move the data to the
code. Moreover, the agent doing the computation can send
out additional agents to other machines to pre-fetch data
needed for subsequent computation and to post-write data
that has already been computed. In this way, the program
can avoid paging overhead even when the amount of data
that needs to be processed is much larger than the amount
of memory available in the entire network.

Algorithmic Integrity: An existing sequential algo-
rithm does not have to be substantially rewritten; it merely

needs to be augmented with the commands to hop with an
agent from one machine to another at the appropriate points
in the algorithm.

The agent-based nature of the approach described in this
paper distinguishes it from previous work aimed at defeat-
ing disk paging by using remote memory on networked
machines. A description of this approach is presented by
Dramitinos and Markatos in [4]. This is a very promising
approach because future improvements in the performance
of disk paging appear to be limited by the inherent bot-
tleneck of mechanical seeking time, but there seems to be
no limit on the speed and bandwidth of computer network.
Dramitinos and Markatos have implemented an “operating
system” which does swapping using remote memory ({4]),
and they found it to be “up to twice as fast as traditional
disk paging.” However, the limiting factor in their approach
is the amount of data that needs to be moved: it is faster to
move a small amount of code and data to a huge amount of
data than to perform the converse move.

In this paper, we describe agent-based implementations
of three classical sequential numerical algorithms—matrix
multiplication and two different algorithms for solving lin-
ear system of equations. The reasons for us to choose se-
quential algorithms are as follows: 1). As will be clear
later in this paper, on large problems sequential algorithms
benefit greatly from good use of a distributed environment;
2). There are algorithms that can not be easily parallelized,
and yet are practically useful, and existing softwaré needs to
take full advantage of a distributed environment with little
porting effort. Our implementations use MESSENGERS, a
system for agent-based distributed computing developed in
Information and Computer Science at the University of Cal-
ifornia, Irvine ([1, 5]). All the performance tests are run on
SUN Ultra Sparc 1 model 170’s with 64MB of main mem-
ory, 1GB of virtual memory, and 10Mbps of Ethernet con-
nection. These workstations have a shared file system.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a brief overview of an agent-based system:
MESSENGERS. The agent-based implementation of ma-
trix multiplication is presented in Section 3, while Section
4 discusses the implementation of two methods for solv-
ing linear systems: Gauss-Seidel iterative method and Crout
factorization based direct method.

2. The MESSENGERS mobile agent system

Mobile agents are programs that move dynamically
among networked machines, carrying their data and execu-
tion states with them. A mobile agent, with strong mobility,
can halt its execution, encapsulate the values of its variables
and execution stack, move to another machine, restore the
state, and continue executing. Although ultimately based
on message passing at low level, this “mobile” capability,

78

as will be shown later in this paper, is the right vehicle for
application programmers who want to make good use of a
distributed environment with less efforts.

All mobile-agent systems have the same general archi-
tecture: a server on each machine accepts incoming agents,
and for each agent, starts an appropriate execution environ-
ment, loads the agent’s state information into the environ-
ment, and resumes agent execution. The most important
feature that distinguishes agent-based systems from other
conventional systems is that all functionality of the applica-
tion is embedded in individual agents, i.e., the programs are
carried by agents as they navigate through space.

The MESSENGERS system ([5]) is an environment for
distributed computing in which applications are developed
as collections of autonomous self-migrating computations,
called Messengers. In the MESSENGERS system, there are
three levels of networks. The lowest level is the physical
network(e.g. a LAN or WAN), which constitutes the under-
lying computational nodes. Superimposed on the physical
layer is the daemon network, where each daemon is a server
process that receives, executes, and dispatches Messengers.
The logical network is an application-specific computation
network created on top of the daemon network. Messengers
may be injected (from the shell or by another Messenger)
into any of the daemon nodes and they may start creating
new logical nodes and links on the current or any other dae-
mons.

The important concepts and features of MESSENGERS
are as follows:

(1) All participating physical nodes have MESSENGERS
daemons running on them. The logical network is thus es-
tablished on top of this daemon network, which in turn runs

_on the physical network.

(2) MESSENGERS scripting language is a subset of C, so it
is easy for C/C++ programmers to develop MESSENGERS
applications. Furthermore, the MESSENGERS script is
first preprocessed into C code which is then compiled into
machine native code, and therefore the execution is very ef-
ficient.

(3) There are two types of variables: Messenger variables
and node variables. A Messenger variable, often taken as a
medium for communication, is one that belongs to a partic-
ular Messenger and travels with that Messenger to different
logical nodes, whereas a node variable is one that is station-
ary to a logical node.

(4) The most important navigational statement for Messen-
gers are create() and hop(). The create() statement gen-
erates a link along which a Messenger moves, and creates
a logical node on the physical node. The hop() statement
causes the Messenger to navigate to a node, along a link or
using the node’s logical address.

(1)
(2)
(3)
(4)
(5)
(6) }
(M}
(8) }

for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) {
C[il[3] = 0.0;
for (k=1; k<=N; k++) {
CI[i1[3] += A[il} (k] * BIk][j];

Figure 1. Pseudocode for sequential matrix
multiplication

3. Sequential matrix multiplication imple-
mented using MESSENGERS

The primary advantage of distributed computing on net-
works of workstations is the availability of inexpensive and
yet abundant resources such as multiple CPU’s, collective
memory and disk space, and network connections. A ma-
jor challenge is building tools to help develop applications
that take full advantage of these resources. The tools have
to be easy to use for those application programmers, such
as software engineers in CAE business or researchers in nu-
merical analysis, who may know little about details of the
distributed environment. The tools have to also ensure that
significant changes are avoided when porting existing code

. or algorithm to a distributed environment. In this section,
we provide a very simple example, namely sequential ma-
trix multiplication, to demonstrate why mobile agent sys-
tems such as MESSENGERS are among these useful tools.

Sequential pseudocode for the multiplication of two
square dense matrices is listed in Figure 1.

When the total memory size of the three matrices ex-
ceeds that of the main memory on one workstation, virtual
memory is used and therefore disk paging occurs. Disk pag-
ing can dramatically degrade the performance. The exact
point at which the performance deteriorates may vary de-
pending on the details of the implementation and the data
access patterns, but the performance falloff is quite severe
once heavy paging kicks in. Figure 5 shows a sudden jump
of the elapsed time with the dashed line. To eliminate disk
paging, we use two connected machines, and program the
above algorithm in MESSENGERS. We first decompose the
two matrices into horizontal and vertical strips, as shown in
Figure 2.

With this, each piece of C;; will be the multiplication of
two sub-matrices A; and B;. The pseudocode in Figure 1
can be slightly modified to work in this block fashion.

Now we construct a logical network on two workstations

79

Ca

Figure 2. Matrix decomposition

as shown in Figure 3. The logical network is linked bidirec-
tionally so that a Messenger can hop from one node to the
other if it so decides.

Node 1 Node 2

Figure 3. Logical network used for matrix mul-
tiplication

We have three Messengers to carry out the task. One
Messenger called Multiplier will do the actual multiplica-
tion, calculating C; on the logical node where A; and B;
reside. So it is easy to imagine that the Messenger Mul-
tiplier hops to the two nodes alternately, carrying its code,
and computation state (which indicates which Cj; is being
calculated). The computation locus is only on a single node,
either Node 1 or Node 2, at any particular time. Another
Messenger, called Preloader, injected by Multiplier on one
node, hops to the other and preloads the node with proper A;
and B;. A third Messenger named Postwriter writes out the
computed submatrix Cj; to the hard disk, after the Multi-
plier finishes the computation of C;; and hops away. These
three Messengers work together to pipeline all the disk /O
(reading from or writing to hard disk typically takes much
less time than multiplying two submatrices), and to mini-
mize communication. Only code, which is tiny compared
to the data, migrates between the two nodes. It is easy to
see that provided the decomposition is done right (in other
words, provided the total size of A;, B; and C;; does not
exceed the size of the main memory on either node), the
submatrix computation will never cause disk paging.

Figure 4 is the pseudocode in MESSENGERS
(matriz_mult() is a function that does the multipli-
cation in the block fashion).

As can be seen clearly from Figure 4, the MESSEN-
GERS implementation leaves the sequential algorithm es-
sentially unchanged: the only thing added is the hop() state-
ment and the injections of a couple of other Messengers
(through the preload() and postwrite() functions) which
simply add few lines of code.

(1) preload(this, A(1l));

(2) preload(this, B(1l));

(3) for (i=1; i<=numpieces; i++) {
(4) preload(other, A(i));

(5) for (j=1; j<=numpieces; j++) {
(6) if (j < num.pieces)

(7) preload{other, B(j+l));

(8) else {

(9) if (i < numpieces) {

(10) preload(other, A(i+l));
(11) preload(other, B(1l));
(12) }

(13) }

(14) C(i,j) = matrixmult(A(i), B(3));
(15) hop (other) ;

(16) postwrite(other, C(i,3));
(17) }

(18) }

Figure 4. Pseudocode for matrix multiplica-
tion in MESSENGERS

Figure 5 shows that the performance of the sequential C
implementation deteriorates dramatically after the total size
of the matrices reaches a certain critical value. Our MES-
SENGERS implementation has performance almost identi-
cal to that of the C implementation when the total size of
the matrices is below this critical value, and it continues the
same performance trend after the total size exceeds this crit-
ical value.

4. Solving large linear system of equations se-
quentially in a distributed environment us-
ing MESSENGERS

Much of the CPU time spent in running numerical anal-
ysis is used in solving linear systems of equations. In this
section we consider two classical methods for solving lin-
ear systems: namely, an iterative method based on Gauss-
Seidel iteration and a direct method based on Crout factor-
ization. We describe our MESSENGERS implementations
of these methods that use multiple machines to eliminate
paging overhead, while leaving the original sequential al-
gorithms essentially unchanged.

80

Performance of Matrix Multiplication
14000 T T T T

~)~ C code :
| ~©~ Messengers Codg "~ 1

0000 |+ vee e

12000 ---

BO00K ++++eve e b

Elapsed Time (s)

] T S
4000

2000

1000 1500
Number of Rows or Columns

2000

Figure 5. Performance of matrix multiplication

4.1. Iterative method based on Gauss-Seidel itera-
tion

Let Ru = f be a system of linear equations, where K is
a N x N matrix, u and f are vectors of size N. Matrix K
can be decomposed into K = D — L — U, where D is the
diagonal of K, and —L and —U are the strictly lower and
upper triangular parts of K.

If we define the Gauss-Seidel iterative matrix Pg by
Pg = (D — L)~'U, we can express Gauss-Seidel iterative
method as ([2])

Unp1 ¢ Poty + (D — L)7'f. M)
We update the components of u in ascending order. Com-
ponents of the new approximation are used as soon as they
are computed. In other words, we solve the j** equation for
u; using new approximations for components 1,2, ..., j — 1.
To start the iteration, we use an arbitrary vector as our ini-
tial guess, e.g. uy = [0, 0, ...O]T. Notice that Gauss-Seidel
iteration can be done in a block fashion, in which only a
portion of the solution vector is updated given a slice of the
matrix K and the entire solution vector from the previous
iteration. This is illustrated in Figure 6.

Since matrix K is usually sparse and banded, we only
store its nonzero terms. These terms will be stored in a 1D
array, in the compact row storage scheme. An integer array
of size N is used to store the positions, in the 1D array, of
the first nonzero terms of all rows.

The matrix K is decomposed into horizontal slices, as
illustrated in Figure 6. Each slice of K is used to update
the components of u corresponding to row positions of the
slice. The logical network used by the MESSENGERS im-
plementation is a ring, where the number of nodes is equal

Figure 6. Matrix decomposition and block
fashion of Gauss-Seidel iteration

[)

Node 1, K1

Node 2, K2

Node 3, K3

L]

Figure 7. The logical network for Gauss-
Seidel iterative method

to the number of slices into which K is decomposed; the
case of 3 nodes is shown in Figure 7. A Messenger car-
rying the solution vector can visit a node, use the slice of
K on that node to update the corresponding solution com-
ponents (this corresponds to the block fashion mentioned
earlier), and then hop to the next node, repeating this until
the error satisfies the stopping criteria. The pseudocode is
shown in Figure 8. The function block_gs() runs one step
of Gauss-Seidel iteration (1) in the block fashion. Notice
that the MESSENGERS code is almost identical to the se-
quential code that would be written once the matrix K and
the vector u are partitioned into strips as described above;
the only difference is the hop statement.

Performance data is shown in Figure 9. The K matrices
used are sparse and banded, and their bandwidth is 10%
of their dimensions. The numbers in parentheses by the
MESSENGERS curve indicate the number of workstations
used, and the amount of total memory required is marked
by the C code curve. It would also be possible to imple-
ment the MESSENGERS version of Gauss-Seidel method
using only two workstations, with one pre-fetching while
the other performs the computation, similar to the imple-
mentation of matrix multiplication described in the previ-
ous section. We chose the implementation shown here to
demonstrate the concept of having the code and state fol-

81

(1) preload(all nodes);

(2) 3=1;

(3) stop = 0;

(4) while (!stop) {

(5) status = block.gs(K(j), u, £f);
(6) if (j == LAST_PIECE) {
(7) err = check.error(u);
(8) if (err < TOL)

(9) stop = 1;
(10) else
(11) j o= 0;
(12) }

(13) J o++;
(14) hop (next) ;
(15) }

Figure 8. Pseudocode for MESSENGERS im-
plementation of Gauss-Seidel iteration

lowing raw data that is distributed but stationary.
4.2. Direct method based on Crout factorization

In the system Ku = f, when matrix K is symmetric and
positive-definite, there exists a non-singular lower triangu-
lar matrix L, with unit diagonal entries, and diagonal matrix
D such that K = LDLT. The process of obtaining matri-
ces L and D is called factorization. After factorization, the
solution is carried out in three steps, namely Forward Re-
duction, Diagonal Scaling, and Backward Substitution.

One possible way of conducting factorization is due to
Crout [7], and the pseudocode is listed in Figure 10. Only
the upper part of the matrix K is stored due to its symme-
try. To further save storage for a sparse and banded matrix, a
“skyline” storage scheme is used, in which we link the first
non-zero items in every column together to form a “sky-
line,” and we do not store the zero values above this line.
Zero values under the skyline are stored, since they could
become non-zero during Crout factorization. The columns
under the skyline are stored in a single 1D double precision
array, and another 1D integer array of size N is used to store
the locations of the diagonal terms in the big double preci-
sion array. Note that no additional storage is necessary in
the factorization process since K is overwritten by U and
D.

In line (3) of Figure 10, the summation over ! corre-
sponds to a dot product of two sub-vectors of columns ¢
and j. These are the two shaded vectors in Figure 11. The

Performance of Gauss~Seidel lerative Method
b T T T T T T T T T

[.... -0- C code
—©- Massengers Cods)

Elapsed Time (s)

5000

4500

5500 8000 €500 7000

Number of Unknowns

Figure 9. Performance of Gauss-Seidel itera-
tive method

(1) For j=1...N

(2) For i=2...5-1
(3) Ki; « Kij —
(4) End For

(5)
(6)
(7)

i-1 - 1~
1=1 Kii Ky

For i=1...7-1
T(—.K,'j
K','j (——RT—;
(8) I\’jj (-—.ij—TK’.,'j
(9) End For
(10) End For

Figure 10. Pseudocode for Crout factorization

computation of the j** column would depend on the previ-
ously computed columns, called the “working set.” Figure
12(a) is an example for a banded matrix. The shaded area is
the working set for the 7°# column.

Crout factorization is an algorithm with very good local-
ity of access. There does not need to be sufficient memory
to hold the entire half matrix; as long as the working set fits
in memory, performance is good. However, when the size
of the working set exceeds the size of the main memory on
a single workstation, extensive paging overhead occurs. In
Figure 15 the dashed line shows how bad the performance
can be when the size of the working set exceeds the size of
main memory.

There are two ways to handle the access to the working
set in a distributed implementation. One way is to bring the

82

Figure 11. Computing of K;; requires the dot
product of the two shaded vectors

)

Figure 12. (a) Working set for the ji* column
(b) Working set decomposition

columns from remote memory (or the hard disk, in the pres-
ence of paging) to the main memory where the j** column
is computed, as they are needed. This will result in signif-
icant communication overhead because the entire working
set is moved.

The other way is the agent-based approach. The basic
idea is to move the code and the 7** column to the work-
ing. set, which is distributed among several workstations,
and compute the terms of the column on remote machines.
The amount of communication overhead incurred by this
approach is much smaller than with the first approach, be-
cause a single column is much smaller than the entire work-
ing set.

The working set is decomposed into several pieces,
where the number of pieces is chosen so that each piece
can fit into the main memory of one workstation. Figure
12(b) shows an example for which the working set is subdi-
vided into three pieces. The arrows indicate how an agent,
carrying the j** column which it is computing, would move
through the pieces of the working set.

Figure 13(a) shows the logical network, again assuming
that the working set is decomposed into three pieces. The
logical network consists of four nodes. Three of the nodes

are used to hold the three working set pieces shown in Fig-
ure 12(b), and a fourth node is used to pre-fetch the next
piece that will be computed later. All four logical nodes are
fully connected, so that an agent can hop to any node from
anywhere in one step. As indicated by the arrows, an agent
would carry the j* column in its Messenger variable, and
hop to logical node 3 where piece k — 2 resides; after it fin-
ishes computing using piece k — 2, it hops forward along
the link to node 2 where piece k — 1 resides (note that k& — 2
and k — 1 are pieces that have been already computed in the
previous loops); finally, it hops back to node 1, computes
the rest of column j using piece k&, and then unloads the
7t column from its Messenger variable to the node vari-
able. These loops go on and on until all columns in piece k
are computed, at which time the agent moves on to the next
node (4 in the example) to compute piece & + 1. Again,
the previously computed pieces & — 1 and k& will be used in
computing k£ + 1, but piece k¥ — 2 will no longer be used in
factorization, so we can now save piece k¥ — 2 to the hard
disk, and use node 3 to pre-fetch piece k& + 2. Figure 13(b)
shows this next step when piece k& + 1 is being computed.
If we compare Figure 13(b) with Figure 13(a), we see that
the logical network ring is like a “running wheel” rotating
forward (clockwise) while it processes the matrix pieces in
sequence. In order for an agent to hop to the right machine
for a column, a mapping from a column number to a piece
number to a logical node number is kept on every node.

The Crout algorithm in Figure 10 is augmented into the
MESSENGERS implementation shown in Figure 14. Three
hops and three load/unloads are added. Note that the cost
of the hop statement will be negligible if the destination
node happens to be the one that the Messenger resides on.
An injection of pre- and post-fetching Messengers is also
added. We gain a huge advantage by doing this, since now
our program can solve problems that are many times (35 in
our example) larger than the memory available on a single
workstation with only few workstations (4 in our example).
We would have had to use 35 machines if we had not used
pre-fetching.

Figure 15 shows the performance of Crout factorization.
The K matrices used are sparse and banded, and their band-
width is 10% of their dimensions. The numbers in paren-
theses by the MESSENGERS curve indicate the number of
pieces into which the matrix K is subdivided. Total mem-
ory required is also marked for some problem sizes. One
may notice that the gap between the two curves (exclud-
ing the segment corresponding to disk paging) now is larger
than what’s shown in Figure 5 (matrix multiplication exam-
ple). This is because the amount of communication through
the network is much larger. In fact, since almost all the
columns (except for the columns in the very first piece)
are carried around by the Messenger, the amount of com-
munication is proportional to the size of the entire matrix

83

k-2 jk1 [k

(@)

k-1 | k |kl

(b)

k+2

Figure 13. Logical network for Crout factoriza-
tion. (a) currently computing piece %. (b) cur-
rently computing piece & + 1.

(O(N?)). However, since the computation complexity of
Crout factorization method is O(N3), our implementation
is scalable. Also, with fast network (100Mbps), our analysis
and test show that the time for communication overhead can
be reduced to about 5%, as compared to the current 30%, of
the total elapsed time.

5. Conclusions and final remarks

We have presented three examples of mobile-agent-
based distributed numerical computations on a network of
workstations. In each case, the performance on a very large
problem, using considerably more data than can fit in the
memory of a single machine, was quite close to the perfor-
mance that would have been achieved if the data fit in mem-
ory. These performance tests are done on a relatively slow
network: 10 Mbps Ethernet. In addition, the MESSEN-
GERS implementations preserved the algorithmic integrity:
the algorithms remain essentially unchanged—the main dif-
ference between the MESSENGERS implementation and
the sequential algorithm is the addition of hop statements
to allow the MESSENGERS programs to become mobile in
the distributed environment.

Producing mobile-agent based implementations such as
the ones described in this paper involves analyzing the
data access pattern; decomposing the data, distributing the
pieces, and managing the data-node mapping; and arrang-
ing the order of data access in accordance with the order
of computing. All of these steps, or something quite sim-
ilar, are part of other distributed programming paradigms
such as message passing. The resulting code changes in
mobile code are very few, because the mobile agent system
has helped us at a higher level that is close to the appli-
cation level. It is worth emphasizing that with sequential
algorithms, such as the ones presented here, we do not have

(1) For 3=1...N

(1.1) hop(to column j)

(1.2) load column j

(2) For i=2...7—-1

(2.1) hop(to column 1)

(3) K + Kij — Z;;ll KuKi;
(3.1) load K

(4) End For

(4.1) hop(to column j)

(5) For i=1...7-1

(6) T« Ky

(7) Kij & 7=

(8) I(J‘] — I(“' — T[(,‘j

(9) End For

(9.1) unload column j

(9.2) inject I/O Messenger if required
(10) End For

Figure 14. Pseudocode for MESSENGERS im-
plementation of Crout factorization

to look for any computation parallelization, and yet we still
gain huge speedup for large problems in a distributed envi-
ronment. Of course, all the algorithms we tried in this paper
have their parallel equivalences, with some being easy to
implement (e.g. the iterative method) and others (e.g. Crout
factorization) requiring significant amount of re-work from
their sequential counterparts ([3]).

Using a network of workstations as a data paging farm
is a promising notion. The mobile-agent-based approach
borrows this idea, but it distinguishes itself from the one
presented in [4] in two ways. First, we do not move all data
to one single machine; rather we move computation to data,
which can significantly reduce communication overhead. It
is this moving of sometimes huge amounts of data that lim-
its the paging device presented in [4] to work well only with
high bandwidth networks. Second, we utilize the “spare”
CPU cycles in the workstation farm to parallelize data I/O,
which in our examples hides the cost of disk I/O completely.
This enables us to use only a few workstations to solve very
large problems, with total data size much larger than the
total amount of main memory available in the workstation
farm.

The agent-based approach described here is at a higher
level than the paging farm approach, which is at the
operating-system level: the paging farm approach is a
general-purpose method with no knowledge of the specifics
of the application.

The three example problems that we have presented are
characterized by good locality of access on each piece of

84

Performance of Crout Factorization
! T T T T

3= Coode : : :
A G e s Gode] e g

L x10

Elapsed Time (s}
@
T

3
Number of Unknowns

Figure 15. Performance of Crout factorization

data that gets distributed. In each of our examples, the com-
putation locus changes “slowly” from one piece of data to
another. This allows the number of hops to be kept rela-
tively small, which substantially reduces the cost of com-
munication. Adapting our approach to more complex data
reference patterns, with code making frequent and less pre-
dictable jumps back and forth on widely spread data, will
require further research.

References

[1] L.F. Bic, M. Fukuda, and M.B. Dillencourt, “Distributed
Computing Using Autonomous Objects”, IEEE Computer,
vo0l.29, no.8, IEEE Comput. Soc, Aug. 1996. 55-61

William L. Briggs, A Multigrid Tutorial, Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsylvania,
1987.

Jack J. Dongarra, lain S. Duff, Danny C. Sorensen, and
Henk A. van der Vorst, Solving Linear Systems on Vector
and Shared Memory Computers, Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania, 1991.

(2]

31

[4] George Dramitinos and Evangelos P. Markatos, “Adaptive
and Reliable Paging to Remote Main Memory”, Journal of

Parallel and Distributed Computing, 58, (1999) 357-388

M. Fukuda, L.F. Bic, and M.B. Dillencourt, “Messages ver-

sus messengers in distributed programming”, Journal of Par-

allel and Distributed Computing, 57, (1999) 188-211

[6] D. Kotz and R.S. Gray, “Mobile agents and the future of the
Internet”, Operating Systems Review, vol.33, (no.3), ACM,
July 1999.7-13

[7] Thomas J. R. Hughes, The Finite Element Method, Linear

Static and Dynamic Finite Element Analysis, Prentice Hall,
1987.

(3]

